Problem 1.32

If you have some experience in electromagnetism, you could do the following problem concerning the curious situation illustrated in Figure 1.8. The electric and magnetic fields at a point \mathbf{r}_{1} due to a charge q_{2} at \mathbf{r}_{2} moving with constant velocity \mathbf{v}_{2} (with $v_{2} \ll c$) are ${ }^{15}$

$$
\mathbf{E}\left(\mathbf{r}_{1}\right)=\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{q_{2}}{s^{2}} \hat{\mathbf{s}} \quad \text { and } \quad \mathbf{B}\left(\mathbf{r}_{1}\right)=\frac{\mu_{\mathrm{o}}}{4 \pi} \frac{q_{2}}{s^{2}} \mathbf{v}_{2} \times \hat{\mathbf{s}}
$$

where $\mathbf{s}=\mathbf{r}_{1}-\mathbf{r}_{2}$ is the vector pointing from \mathbf{r}_{2} to \mathbf{r}_{1}. (The first of these you should recognize as Coulomb's law.) If $\mathbf{F}_{12}^{\mathrm{el}}$ and $\mathbf{F}_{12}^{\mathrm{mag}}$ denote the electric and magnetic forces on a charge q_{1} at \mathbf{r}_{1} with velocity \mathbf{v}_{1}, show that $F_{12}^{12 g} \leq\left(v_{1} v_{2} / c^{2}\right) F_{12}^{\mathrm{el}}$. This shows that in the non-relativistic domain it is legitimate to ignore the magnetic force between two moving charges.

Solution

According to Coulomb's law, the electric force acting on q_{1} is the charge times the electric field at its location.

$$
\begin{aligned}
\mathbf{F}_{12}^{\mathrm{el}} & =q_{1} \mathbf{E}\left(\mathbf{r}_{1}\right) \\
& =q_{1}\left(\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{q_{2}}{s^{2}} \hat{\mathbf{s}}\right) \\
& =\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{q_{1} q_{2}}{s^{2}} \hat{\mathbf{s}}
\end{aligned}
$$

The magnitude of this vector is

$$
\left|\mathbf{F}_{12}^{\mathrm{el}}\right|=F_{12}^{\mathrm{el}}=\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{q_{1} q_{2}}{s^{2}} .
$$

Multiply both sides by ϵ_{o}.

$$
\epsilon_{\mathrm{o}} F_{12}^{\mathrm{el}}=\frac{1}{4 \pi} \frac{q_{1} q_{2}}{s^{2}}
$$

According to the Biot-Savart law, the magnetic force acting on q_{1} is the charge times the cross product of its velocity and the magnetic field at its location.

$$
\begin{aligned}
\mathbf{F}_{12}^{\mathrm{mag}} & =q_{1} \mathbf{v}_{1} \times \mathbf{B}\left(\mathbf{r}_{1}\right) \\
& =q_{1} \mathbf{v}_{1} \times\left(\frac{\mu_{\mathrm{o}}}{4 \pi} \frac{q_{2}}{s^{2}} \mathbf{v}_{2} \times \hat{\mathbf{s}}\right) \\
& =\frac{\mu_{\mathrm{o}}}{4 \pi} \frac{q_{1} q_{2}}{s^{2}} \mathbf{v}_{1} \times\left(\mathbf{v}_{2} \times \hat{\mathbf{s}}\right) \\
& =\mu_{\mathrm{o}}\left(\epsilon_{\mathrm{o}} F_{12}^{\mathrm{el}}\right) \mathbf{v}_{1} \times\left(\mathbf{v}_{2} \times \hat{\mathbf{s}}\right) \\
& =\frac{F_{12}^{\mathrm{el}}}{c^{2}} \mathbf{v}_{1} \times\left(\mathbf{v}_{2} \times \hat{\mathbf{s}}\right)
\end{aligned}
$$

[^0]Recall that the magnitude of the cross product between two vectors, \mathbf{A} and \mathbf{B}, is $|\mathbf{A} \times \mathbf{B}|=|\mathbf{A}||\mathbf{B}| \sin \beta$, where β is the angle between the vectors. Let θ be the angle between \mathbf{v}_{1} and $\mathbf{v}_{2} \times \hat{\mathbf{s}}$, and let α be the angle between \mathbf{v}_{2} and $\hat{\mathbf{s}}$. Then the magnitude of the magnetic force acting on q_{1} is

$$
\begin{aligned}
\left|\mathbf{F}_{12}^{\mathrm{mag}}\right|=F_{12}^{\mathrm{mag}} & =\frac{F_{12}^{\mathrm{el}}}{c^{2}}\left|\mathbf{v}_{1} \times\left(\mathbf{v}_{2} \times \hat{\mathbf{s}}\right)\right| \\
& =\frac{F_{12}^{\mathrm{el}}}{c^{2}} v_{1}\left|\mathbf{v}_{2} \times \hat{\mathbf{s}}\right| \sin \theta \\
& =\frac{F_{12}^{\mathrm{el}}}{c^{2}} v_{1}\left(v_{2}|\hat{\mathbf{s}}| \sin \alpha\right) \sin \theta \\
& =\left(\frac{v_{1} v_{2}}{c^{2}}\right) F_{12}^{\mathrm{el}} \sin \alpha \sin \theta \\
& \leq\left(\frac{v_{1} v_{2}}{c^{2}}\right) F_{12}^{\mathrm{el}}
\end{aligned}
$$

Note that the magnitude of a unit vector is $1:|\hat{\mathbf{s}}|=1$. Also, $\sin \alpha \leq 1$ and $\sin \theta \leq 1$.

[^0]: ${ }^{15}$ See, for example, David J. Griffiths, Introduction to Electrodynamics, 3rd ed., Prentice Hall, (1999), p. 440.

