Problem 1.32

If you have some experience in electromagnetism, you could do the following problem concerning the curious situation illustrated in Figure 1.8. The electric and magnetic fields at a point \mathbf{r}_1 due to a charge q_2 at \mathbf{r}_2 moving with constant velocity \mathbf{v}_2 (with $v_2 \ll c$) are¹⁵

$$\mathbf{E}(\mathbf{r}_1) = \frac{1}{4\pi\epsilon_0} \frac{q_2}{s^2} \mathbf{\hat{s}} \quad \text{and} \quad \mathbf{B}(\mathbf{r}_1) = \frac{\mu_0}{4\pi} \frac{q_2}{s^2} \mathbf{v}_2 \times \mathbf{\hat{s}}$$

where $\mathbf{s} = \mathbf{r}_1 - \mathbf{r}_2$ is the vector pointing from \mathbf{r}_2 to \mathbf{r}_1 . (The first of these you should recognize as Coulomb's law.) If $\mathbf{F}_{12}^{\text{el}}$ and $\mathbf{F}_{12}^{\text{mag}}$ denote the electric and magnetic forces on a charge q_1 at \mathbf{r}_1 with velocity \mathbf{v}_1 , show that $F_{12}^{\text{mag}} \leq (v_1 v_2 / c^2) F_{12}^{\text{el}}$. This shows that in the non-relativistic domain it is legitimate to ignore the magnetic force between two moving charges.

Solution

According to Coulomb's law, the electric force acting on q_1 is the charge times the electric field at its location.

$$\begin{aligned} \mathbf{F}_{12}^{\text{el}} &= q_1 \mathbf{E}(\mathbf{r}_1) \\ &= q_1 \left(\frac{1}{4\pi\epsilon_0} \frac{q_2}{s^2} \mathbf{\hat{s}} \right) \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{s^2} \mathbf{\hat{s}} \end{aligned}$$

The magnitude of this vector is

$$|\mathbf{F}_{12}^{\rm el}| = F_{12}^{\rm el} = \frac{1}{4\pi\epsilon_{\rm o}} \frac{q_1 q_2}{s^2}.$$

Multiply both sides by ϵ_{o} .

$$\epsilon_{\rm o} F_{12}^{\rm el} = \frac{1}{4\pi} \frac{q_1 q_2}{s^2}$$

According to the Biot-Savart law, the magnetic force acting on q_1 is the charge times the cross product of its velocity and the magnetic field at its location.

$$\begin{aligned} \mathbf{F}_{12}^{\text{mag}} &= q_1 \mathbf{v}_1 \times \mathbf{B}(\mathbf{r}_1) \\ &= q_1 \mathbf{v}_1 \times \left(\frac{\mu_0}{4\pi} \frac{q_2}{s^2} \mathbf{v}_2 \times \hat{\mathbf{s}}\right) \\ &= \frac{\mu_0}{4\pi} \frac{q_1 q_2}{s^2} \mathbf{v}_1 \times (\mathbf{v}_2 \times \hat{\mathbf{s}}) \\ &= \mu_0 (\epsilon_0 F_{12}^{\text{el}}) \mathbf{v}_1 \times (\mathbf{v}_2 \times \hat{\mathbf{s}}) \\ &= \frac{F_{12}^{\text{el}}}{c^2} \mathbf{v}_1 \times (\mathbf{v}_2 \times \hat{\mathbf{s}}) \end{aligned}$$

¹⁵See, for example, David J. Griffiths, Introduction to Electrodynamics, 3rd ed., Prentice Hall, (1999), p. 440.

Recall that the magnitude of the cross product between two vectors, **A** and **B**, is $|\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \beta$, where β is the angle between the vectors. Let θ be the angle between \mathbf{v}_1 and $\mathbf{v}_2 \times \hat{\mathbf{s}}$, and let α be the angle between \mathbf{v}_2 and $\hat{\mathbf{s}}$. Then the magnitude of the magnetic force acting on q_1 is

$$|\mathbf{F}_{12}^{\text{mag}}| = F_{12}^{\text{mag}} = \frac{F_{12}^{\text{el}}}{c^2} |\mathbf{v}_1 \times (\mathbf{v}_2 \times \hat{\mathbf{s}})|$$
$$= \frac{F_{12}^{\text{el}}}{c^2} v_1 |\mathbf{v}_2 \times \hat{\mathbf{s}}| \sin \theta$$
$$= \frac{F_{12}^{\text{el}}}{c^2} v_1 (v_2 |\hat{\mathbf{s}}| \sin \alpha) \sin \theta$$
$$= \left(\frac{v_1 v_2}{c^2}\right) F_{12}^{\text{el}} \sin \alpha \sin \theta$$
$$\leq \left(\frac{v_1 v_2}{c^2}\right) F_{12}^{\text{el}}.$$

Note that the magnitude of a unit vector is 1: $|\hat{\mathbf{s}}| = 1$. Also, $\sin \alpha \leq 1$ and $\sin \theta \leq 1$.